Adaptive Measurement Network for CS Image Reconstruction

نویسندگان

  • Xuemei Xie
  • Yuxiang Wang
  • Guangming Shi
  • Chenye Wang
  • Jiang Du
  • Xiao Han
چکیده

Conventional compressive sensing (CS) reconstruction is very slow for its characteristic of solving an optimization problem. Convolutional neural network can realize fast processing while achieving comparable results. While CS image recovery with high quality not only depends on good reconstruction algorithms, but also good measurements. In this paper, we propose an adaptive measurement network in which measurement is obtained by learning. The new network consists of a fully-connected layer and ReconNet. The fully-connected layer which has low-dimension output acts as measurement. We train the fully-connected layer and ReconNet simultaneously and obtain adaptive measurement. Because the adaptive measurement fits dataset better, in contrast with random Gaussian measurement matrix, under the same measurement rate, it can extract the information of scene more efficiently and get better reconstruction results. Experiments show that the new network outperforms the original one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Similarity measurement for describe user images in social media

Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...

متن کامل

ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Random Measurements

The goal of this paper is to present a non-iterative and more importantly an extremely fast algorithm to reconstruct images from compressively sensed (CS) random measurements. To this end, we propose a novel convolutional neural network (CNN) architecture which takes in CS measurements of an image as input and outputs an intermediate reconstruction. We call this network, ReconNet. The intermedi...

متن کامل

The influence of various adaptive radial undersampling schemes on compressed-sensing L1-regularized reconstruction

Introduction Adaptive imaging allows multiple image sets, each having a different spatial-temporal balance, to be retrospectively reconstructed from the same dataset. High temporal resolution image sets from radial sampling schemes are typically undersampled, and suffer from streak artifacts that degrade image quality. It has been shown that a compressed sensing (CS) L1-penalized reconstruction...

متن کامل

Improved total variation minimization method for compressive sensing by intra-prediction

Total variation (TV) minimization algorithms are often used to recover sparse signals or images in the compressive sensing (CS). But the use of TV solvers often suffers from undesirable staircase effect. To reduce this effect, this paper presents an improved TV minimization method for block-based CS by intra-prediction. The new method conducts intra-prediction block by block in the CS reconstru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017